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Abstract. The purpose of this study was to utilize near-infrared (NIR) spectroscopy and near-infrared
chemical imaging (NIR-CI) as non-invasive techniques to evaluate the drug loading in letrozole-loaded
PLGA nanoparticle formulations prepared by the emulsification–solvent evaporation method. A Plack-
ett–Burman design was applied to evaluate the main effects of amount of drug (X1), amount of polymer
(X2), stirring rate (X3), emulsifier concentration (X4), organic to aqueous phase volume ratio (X5), type of
organic solvent (X6), and homogenization time (X7) on drug entrapment efficiency. The influence of three
different spectral pretreatment methods (multiplicative scatter correction, standard normal variate, and
Savitzky–Golay second derivative transformation with third-order polynomial) and two different regres-
sion methods (PLS regression and principal component regression (PCR)) on model prediction ability
were compared. PLS of spectra that were pretreated with Savitzky–Golay second derivative transforma-
tion provided better model prediction than PCR as it revealed better linear correlation (correlation
coefficient of 0.991) for both calibration and prediction models. Relatively low values of root mean square
errors of calibration (RMSEC=0.748) and prediction (RMSEP=0.786) and low standard errors of cali-
bration (SEC=0.758) and prediction (SEP=0.589) suggested good predictability for estimation of the
loading of letrozole in PLGA nanoparticles. NIR-CI analysis also revealed mutual homogenous distribu-
tion of both polymer and drug and was capable of clearly distinguishing the 12 formulations both
quantitatively and qualitatively. In conclusion, NIR and NIR-CI could be potentially used to characterize
anticancer drug-loaded nanoparticulate matrix.
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INTRODUCTION

Letrozole is a third generation, non-steroidal competitive
aromatase inhibitor approved for the endocrine treatment of
estrogen receptor positive (ER+) breast cancer. It is commer-
cially available as an oral tablet (Femara®, 2.5 mg daily). For
patients with advanced breast cancer, the drug should be
continued until tumor progression ends (1). The oral dosage
form of letrozole offers uncontrolled delivery and release,
lacks specificity, often leads to poor patient compliance, and
results in major systemic side effects such as deep vein throm-
bosis, bone loss, and hypercholestremia, following long-term
therapy (1,2). To increase target specificity, improve pharma-
cokinetic behavior, and tissue distribution, it would be ideal if
a sustained delivery system could be used for letrozole. Poly-
meric nanoparticles are very small in size and are able to cross
the highly permeable vasculature supplying blood to the tu-
mor, and enter tumor cells through endocytosis (3). Biode-

gradable polymers such as poly (D,L-lactic-co-glycolic acid)
(PLGA) are biocompatible, FDA approved, and have the
ability to release the active agent in a controlled or sustained
manner in order to maintain therapeutic blood levels over
extended periods of time. This may lead to improved thera-
peutic efficacy and reduce the dosing frequency for enhanced
patient compliance and convenience while reducing the sever-
ity and frequency of side effects (4).

The application of traditional analytical methods such as
reverse phase high-performance liquid chromatography (RP-
HPLC) and UV spectroscopy in pharmaceutical development
usually requires destructive extraction procedures of small,
nominally random product samples to document product
quality (5). Such procedures are time-consuming and often
fail to assure zero-defect product quality since they fail to
identify the effect of critical process parameters on product
quality attributes (6). Process Analytical Technology is a sys-
tem for designing, analyzing, and controlling manufacturing
processes based on continuous monitoring of critical quality
and performance attributes of products. It has shifted the
focus from laboratory-based “testing to document quality par-
adigm” to a “continuous quality assurance paradigm” which
provides real-time process control to improve the understand-
ing of the physical and chemical processes that occur during
pharmaceutical unit operations (5,7).
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Near-infrared (NIR) spectroscopy and chemical imaging
(NIR-CI) have emerged as valuable tools for pharmaceutical
quality analyses since they provide a wealth of chemical and
physical information required for measuring process perfor-
mance (6). The major advantages of NIR spectroscopy and
imaging over traditional analytical methods lie in their rapid
and nondestructive measurements without the need for any
sample pretreatments, its robust instrumentation (8), capacity
for remote measurement by interfacing with fiber optic
probes, and ability to predict chemical and physical properties
from a single spectrum (5,9). NIR imaging combines NIR
spectroscopy with digital image processing and provides both
spatial and spectral information about the distribution of com-
ponents in a sample (10). The main disadvantages of NIR
spectroscopy and imaging are the minor intensity of absorp-
tion and the broadening of absorption bands (11). These
drawbacks are compensated for by the application of a user-
friendly software for multivariate analysis that allows for the
extraction of essential information for the properties of inter-
est of the analyzed system from a large dataset (5).

The purpose of this research was to utilize NIR spectros-
copy and chemical imaging as nondestructive methods to eval-
uate the drug contents in PLGA-based nanoparticles of
letrozole through a Plackett–Burman (PB) screening design.

MATERIALS AND METHODS

Materials

Letrozole (purity 99.9 %) was purchased from 2A Phar-
machem (Lisle, Illinois, USA). Poly (lactide-co-glycolide)
(PLGA, 50:50 of inherent viscosity 0.58dL/g in hexafluoroiso-
propanol, Mw≈30,000 Da) was purchased from Lactel® In-
ternational Absorbable Polymers (Pelham, AL, USA).
Polyvinyl alcohol (PVA; molecular weight 13, 000–23,000),
HPLC-grade dichloromethane, chloroform, and acetonitrile
were obtained from Sigma-Aldrich (St. Louis, MO, USA).
All reagents and chemicals used were of analytical grade and
were used as received.

Design of Experiments

Plackett–Burman experimental designs are fractional fac-
torial designs that are used to identify the main effects of a
large number of factors that are likely to affect critical quali-
ties of a particular formulation. Because PB designs are frac-
tional factorial designs, the number of runs needed to
investigate main effects is equal to 2n or multiples of 4 and
so they can be used to identify critical factors with the least
number of experimental runs, with very good degree of accu-
racy (12,13). They are therefore very useful when the aim is to
identify factors or variables that can be fixed or eliminated in
further investigations.

In this study, a Plackett–Burman design was applied to
examine the effects of amount of drug (X1), amount of poly-
mer (X2), stirring rate (X3), emulsifier concentration (X4),
organic to aqueous phase volume (X5), type of organic solvent
(X6), and homogenization time (X7) on drug entrapment effi-
ciency, using JMP software, version 8.0.2 (SAS, NC, USA).
The independent factors, their high and low levels were based
on preliminary studies and also on reports by other authors on

their effects on the selected responses (9,14–16). The levels of
polymer and drug were selected based on preliminary in vitro
release experiments which showed that increasing the drug
concentration relative to the polymer (drug/polymer ratio of
1:2) resulted in significantly higher burst release. The different
formulation composition and manufacturing conditions are
shown in Table I.

The PB design model is described by the linear regression
equation;

Y ¼ B0 þ B1X1 þ B2X2 þ B3X3 þ B4X4 þ . . . . . . . . . :þ BnXn;

where Y is the response, B0 is the arithmetic mean response
and B1, B2,……, Bn are the coefficients of the factors X1,
X2…..Xn, respectively.

Preparation of Letrozole-Loaded Nanoparticles

Letrozole-loaded nanoparticles were prepared using the
emulsification–solvent evaporation method described by
Zidan et al. (9), with some modifications. Briefly, accurately
weighed amounts of PLGA and letrozole, based on the exper-
imental design (Table I), were dissolved in 10 ml of organic
solvent (dichloromethane or chloroform). PVA solution was
prepared with demineralized water by heating and then
cooled to room temperature before use. The organic phase
was added dropwise to the aqueous phase with stirring at
300 rpm using a Lightnin stirrer (General Signal Co., NY).
After the addition of the organic phase, the oil-in-water emul-
sion was mixed by homogenizing at 6,000 rpm with a probe
homogenizer (PowerGen 125, Fisher Scientific, PA) for 5 or
10 min, according to the experimental design (Table I), while
stirring. The resulting emulsion was further stirred for about
3 h at room temperature to ensure complete evaporation of
the organic solvent. For NIR spectroscopy and chemical im-
aging analyses, control samples of letrozole only and PLGA
only, were prepared using the same method described above.
For PLGA only, the levels for formulation 1 (but without
letrozole) were used while for letrozole only controls, the
levels for formulation 5 (but without PLGA) were used. Three
replicates of each formulation and controls were prepared in
each case for analyses to ensure reproducibility of the process.
Nanoparticles were harvested from the aqueous phase by
centrifugation (L8-70M ultracentrifuge, Beckman Coulter
Co., USA) at 21,000 rpm for 30 min at 4°C. The obtained
nanoparticles were washed twice with 10 ml of double-distilled
water and freeze-dried (Labconco Co., MI) for 24 h. The
freeze-dried nanoparticles were then stored in a refrigerator
at 4°C until further studies.

Characterization of Letrozole-Loaded Nanoparticles

The size of the prepared nanoparticles were analyzed by
photon correlation spectroscopy using a Zetasizer Nano-ZS
(Malvern Instruments Inc., Westborough, MA) at an angle of
90° in 10-mm path length cells at 25°C. About 5 mg of the
freeze-dried nanoparticles was suspended in demineralized
water and sonicated for about 2 min. About 1 ml of the
suspension was placed in a disposable cuvette and the particle
size determined. Particle size was expressed as the mean
number weighted.
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Surface morphology of the nanoparticles was visualized
by scanning electron microscopy (JSM-6390 LV, JOEL,
Tokyo, Japan). Powdered nanoparticles were fixed to alumi-
num stubs with double-sided carbon tape and sputter-coated
with gold (Desk V, Denton Vacuum, NJ) before SEM obser-
vation under high vacuum.

The amount of letrozole in PLGA nanoparticles was
assayed using a validated HPLC method developed according
to the USP monograph (USP31/NF 26) of letrozole assay. The
HPLC system (Shimadzu, Kyoto, Japan) consisted of two LC-
10AD VP pumps, a SIL-10AD VP autoinjector at room tem-
perature, a variable programmable SPD-10AV VP UV–vis
detector and a SCL-10AVP system controller connected to a
class VP 5.03 data processing system. The stationary phase
was a Zorbax SB-C8, 4.6×150 mm column (3.5 μm packing)
fitted with an SB-C8, 4.6×12.5 mm reliance guard column
(Agilent Technologies), while the mobile phase was water
and acetonitrile (55:45v/v). Elution was carried out isocrati-
cally at a flow rate of 1.0 ml/min and an injection volume of
20 μL at a wavelength of 232 nm. The developed chromato-
graphic method, validated according to ICH Q2R1 guidelines
(17) showed linearity (R2=0.9998) in the range from 1 to
60 μg/ml, accuracy with recovery between 95 and 105 %,
LOD of 0.213 μg/ml and LOQ of 0.75 μg/ml.

Approximately 5 mg of freeze-dried nanoparticles were
dissolved in 5 ml of chloroform by vigorous vortexing and
sonication for about 5 min. The resulting solution was then
filtered through a 0.22-μm filter. About 100 μL of the resulting
solution was then diluted with 900 μL of the mobile phase and
assayed by HPLC. Experiments were performed in triplicate
and the entrapment efficiency (EE) was calculated according
to the formula:

EE %ð Þ¼ Mass of drug in nanoparticles
Mass of drug used in formulation

� 100

NIR Spectroscopy

NIR spectra for the 12 formulations were collected using
a Foss NIR spectrometer equipped with a 5000 Rapid Content
Analyzer module (Foss NIRSystems, model 6500, Laurel,

MD) and a Vision software (version 3.2) for data collection.
Spectra acquisition was carried out in the diffuse reflectance
mode over the range of 1,100-2,500 nm, using a tungsten-
halogen lamp, a quartz beam splitter and an indium–gallium
arsenide (InGaAs) detector.

Freeze-dried nanoparticles were placed in 2-ml transpar-
ent borosilicate glass vials with crimped polyethylene caps and
spectra were obtained in sextet for each formulation by scan-
ning directly through the base of the sample vials. The vials
were rotated during each scan to ensure representative spec-
tra. Spectral processing and chemometric analyses were per-
formed using Unscrambler software (version 9.7, CAMO
Software AS, Oslo, Norway). Three different pretreatment
methods were applied to study the effect of each on the
robustness of the calibration model, namely multiplicative
scatter correction (MSC), standard normal variate (SNV),
and third-order polynomial Savitzky–Golay second derivative
with a filter width of 7 data points. Principal component
analysis was then performed on the pretreated spectra by
dividing the 12 formulations into two independent sets, name-
ly calibration set and validation set, according to their mea-
sured drug loadings from the destructive entrapment
experiment. Each set contained 36 samples. Formulations 1,
2,3,7,8, and 9, covering an actual drug loading range of 4.60–
17.89 % were assigned to the calibration set while formula-
tions 4, 5, 6, 10, 11, and 12, covering an actual drug loading
range of 3.09–18.53 % were assigned to the validation set.
Partial least squares (PLS) and principal component (PCR)
regression were then performed to develop the calibration
and validation models. The selection of a robust model with
the best predictive ability was made according to the following
criteria: low standard errors of calibration (SEC) and predic-
tion (SEP), low root mean square errors of calibration
(RMSEC), and prediction (RMSEP), high correlation coeffi-
cient, and small bias and small differences between RMSEC
and RMSEP (18).

Near-Infrared Chemical Imaging

Near-infrared images of the 12 formulations were
obtained using Sapphire™ NIR spectral Imaging system
(Spectral Dimensions Inc., Olney, MD). The freeze-dried

Table I. Plackett–Burman Experimental Design

Formulation
Amount of
drug (mg) (X1)

Amount of
polymer (mg) (X2)

Stirring
rate (rpm) (X3)

Emulsifier
(%w/v) (X4)

O/W ratio
(X5)

Organic
solvent (X6)

Homogenization
time (min) (X7)

1 25 400 1,200 0.4 1:10 CLF 5
2 25 200 1,200 0.2 1:10 DCM 5
3 50 200 600 0.4 1:10 DCM 10
4 50 400 1,200 0.2 1:10 CLF 10
5 50 200 1,200 0.4 1:20 CLF 5
6 25 200 600 0.4 1:10 CLF 10
7 25 200 1,200 0.2 1:20 DCM 10
8 50 400 600 0.2 1:10 DCM 5
9 50 400 1,200 0.4 1:20 DCM 10
10 25 400 600 0.2 1:20 CLF 10
11 25 400 600 0.4 1:20 DCM 5
12 50 200 600 0.2 1:20 CLF 5

CLF chloroform, DCM dichloromethane
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powdered samples were placed on a locally made aluminum
plate with a 5-mm hole and NIR light (in the diffuse reflec-
tance mode) from an illumination source was focused on the
samples. The reflected light was captured via an imaging optic
and passed through a spectral encoder, a liquid crystal tunable
filter, which separated the images into their spectral compo-
nents over the spectral range of 1,100–2,450 nm. The images
of the samples at the selected wavelengths were then recorded
on an InGaAs focal plane array (FPA) detector. Each pixel in
the detector array corresponds to approximately 1,600 μm2

(40×40 μm) area of the powder surface and each data set
contains 125 wavelength increment scans per spectrum. The
resulting three-dimensional data sets, generally referred to as
hyper spectral image cubes, consisted of x-axis and y-axis
which represented the spatial information and the z-axis,
which represented the spectral information.

Reflectance calibration was carried out to account for the
background spectral response of the instrument and the ‘dark’
camera response. The background (B) cube image was obtained
with the camera focused on a high reflectance standard (Spec-
tralon-99) and dark cube (D) was acquired with the camera
focused at a mirror (no reflectance). Reflectance (R) was then
obtained by processing the sample (S), dark cube (D), and the
background (B) image cubes using the relationship:

R ¼ S�D
B�D

Spectral data were analyzed using ISys™ 5.0 software
(Spectral Dimensions Inc.) by first converting the data into
absorbance using the equation:

A ¼ log 1=Rð Þ
As in NIR spectroscopy, three different preprocessing

methods namely MSC, SNV, and Savitzky–Golay second de-
rivative with a filter width of 7 points, were applied to the data
to reduce or eliminate interferences such as intensity differ-
ences and light scattering effects. PLS regression was per-
formed on the data sets. To visualize the differences within
formulations, a library was built from the pure component
spectra representing this binary system (letrozole and PLGA).
The intensity values for the PLS score images were then
analyzed based on the library with class 1 representing letro-
zole. The spectral absorbance for each pixel was decomposed
into score values associated with each component. A quanti-
tative measure of the percent drug loading was also deter-
mined by calculating the percent standard deviation of the
distribution of the pixel intensities derived from the histo-
grams of the PLS score images.

RESULTS AND DISCUSSION

Letrozole-loaded nanoparticles were successfully pre-
pared using the emulsification–solvent evaporation method
outlined. Since Placket–Burman designs are resolution 4
designs, only main effects of the selected variables were ana-
lyzed and factors that had significant main effects on the
responses were selected for further studies during optimiza-
tion. SEM image (Fig. 1) showed that the prepared nano-
particles were well-formed and non-porous with some
agglomeration, which was expected with PLGA.

Based on the various factor combinations generated by
the Plackett–Burman experimental design, there was ob-
served variation in the particle sizes of the various formula-
tions. The mean particle sizes obtained for the various
formulations ranged from 225.4±32.1 nm (formulation 6) to
707.1±51.9 nm (formulation 4; Table II). It was observed from
statistical analyses that generally, an increase in the amounts
of drug and polymer resulted in a corresponding increase in
the particle size. This could be attributed to an increase in the
viscosity of the organic phase, resulting in a high viscous
resistance against the net shear stress during the emulsifica-
tion step. This hindered the rapid dispersion of the organic
phase into the aqueous phase. The increased viscosity also
caused small nanodroplets to coalesce to form larger particles
resulting in an increase in the particle size (14,15).

For the 12 formulations, the various factor combinations
also resulted in entrapment efficiency range from 52.61±
3.33 % (formulation 11) to 95.47±1.75 % (formulation 4;
Table II). The regression equation explaining the effects of
the various factors on EE (Y) is given by:

Y ¼ 79:346þ 7:476 X1ð Þ � 2:353 X2ð Þ � 1:754 X3ð Þ � 0:466 X4ð Þ
� 7:318 X5ð Þ þ 6:559 X6ð Þ � 1:366 X7ð Þ

Pareto ranking analysis (Fig. 2) showed that the amount
of drug (X1) was the most significant factor controlling the
EE, followed by the organic to aqueous phase volume ratio
(X5) and the type of organic solvent (X6), as depicted by the
length of the bars and their p values being less than the a priori
value of 0.05. Other factors such as polymer loading (X2),
stirring rate (X3), emulsifier concentration (X4), and homog-
enization time (X7) also affected EE but their effects were not
statistically significant (p>0.05). A quantile–quantile plot
showed a linear correlation between the observed and pre-
dicted values of the EE with R2=0.92 (Fig. 3). Further analysis
by ANOVA confirmed that the model was statistically
significant in its prediction of EE (Prob>F=0.0463). The
Prob>F is the observed significance probability (p value) of
obtaining a greater F value by chance alone if the specified
model fits no better than the overall mean response.

The main effects of the independent variables on EE
could also be explained using three-dimensional surface and
contour plots (Fig. 4). It could be observed that increasing the
amount of drug (X1) from 25 to 50 mg resulted in an increase
in the EE. This was because an increase in the amount of drug

Fig. 1. SEM image of letrozole-loaded nanoparticles (formulation 6)
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resulted in a more viscous dispersed phase, leading to in-
creased coalescence of the nanodroplets. This gave rise to
nanoparticles with increased sizes and higher EE since more
drug was available for encapsulation (14,16).

An increase in the organic to aqueous phase volume ratio
(X5) resulted in nanoparticles with significantly low EE (p<0.05)
because it led to a corresponding decrease in the viscosity of the
medium. The increased volume and decreased viscosity caused
more drug molecules to partition into the aqueous phase from
the organic phase during the emulsification and solvent evapo-
ration steps, resulting in less drug retention in the polymermatrix
and a decrease in the EE (16).

NIR Spectroscopy

Generally, NIR spectra of solid powdered samples
recorded in the reflectance mode are affected by variations
within spectral groups due to varying particle size distributions
(19). These variations result in dissimilar packing densities,
intensity differences, light scattering effects, path length var-
iations, and ultimately baseline shifts in the spectra (20). In-
strumental effects such as random noise, changes in lamp
intensity, and detector response may also cause variations
within spectral groups and can adversely affect the robustness
and reliability of the multivariate calibration model to be
developed (5,20). In an attempt to eliminate, reduce, or stan-
dardize the effects of these variations on our multivariate
model, we applied three different preprocessing methods,

namely multiplicative scatter correction, standard normal var-
iate, and Savitzky–Golay second derivative transformation
with third-order polynomial using 7 filter points, to study the
influence each pretreatment method on the robustness of our
regression model.

It was observed that spectra for both MSC and SNV
looked similar in shape (Fig. 5). Compared to the original
spectra, both MSC and SNV were able to remove a large part
of the variance between the spectra without distorting the
spectral features. This observation has been reported by other
authors that MSC- and SNV-transformed spectra are closely
related and that the difference in prediction ability between
the two pretreatment methods is very small (21,22). Both
MSC and SNV are normalization methods that effectively
minimize or eliminate variations due to path length and base-
line offsets, thus improving the linearity of the relationship
between the constituents and the spectral values. MSC gives
an estimation of the relation of the scatter of each sample with
respect to the scatter of a mean spectrum which is calculated
from all the spectra in a defined data set by a least squares
regression. Using this mean spectrum, the same least squares
regression is performed on every spectrum to minimize the
variations due to amplified or additive effects (20). SNV, on
the other hand, is a row-oriented correction method which

Table II. Observed Particle Sizes, PDI, Drug Loading, and Entrapment Parameters for the 12 Formulations Determined by Photon Correlation
Spectroscopy and Destructive RP-HPLC Analysis

Formulation
Particle
size (nm)

Polydispersity
index (PDI)

Theoretical drug
loading (%)

Actual drug
loading (%)

Actual PLGA
loading (%)

Entrapment
efficiency (%)

1 461.3±42.3 0.381±0.021 5.88 4.6±0.13 95.4 78.3±2.15
2 504.1±25.7 0.436±0.012 11.11 8.63±0.36 91.37 77.67±0.55
3 499.2±31.2 0.642±0.011 20.0 17.89±0.23 82.11 89.46±1.14
4 707.1±51.9 0.390±0.004 11.11 10.6±0.19 89.4 95.47±1.75
5 526.5±41.5 0.562±0.027 20.0 16.29±0.27 83.71 81.45±1.37
6 225.4±32.1 0.500±0.029 11.11 10.43±0.11 89.57 93.88±0.97
7 420.5±31.5 0.349±0.007 11.11 6.13±0.28 93.87 55.08±2.49
8 702.2±45.5 0.259±0.022 11.11 9.86±0.10 90.14 84.76±0.87
9 611.3±38.1 0.257±0.022 11.11 8.57±0.13 91.43 77.14±1.13
10 415.7±25.2 0.817±0.072 5.88 4.31±0.22 95.69 73.24±3.77
11 496.4±45.3 0.321±0.009 5.88 3.09±0.20 96.91 52.61±3.33
12 535.6±22.5 0.457±0.005 20.0 18.53±0.15 81.47 92.65±0.77

Fig. 2. Pareto chart showing independent variables and their esti-
mates of effect on EE. The length of the bar shows the order of effect
of the factors on EE while the negative sign shows an inverse rela-
tionship between the factor and EE

Fig. 3. Plot of actual EE against predicted EE determined by RP-
HPLC analysis
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corrects for each individual spectrum at each wavelength.
Each spectrum is mean centered and divided by its standard
deviation, so that the new spectra are centered in zero and
their standard deviations are one, with a common scale for all
spectra (23).

For the Savitzky–Golay second derivative-treated spec-
tra, it was observed that spectral peak and troughs were more
prominent than the original, untreated spectra and were also
different from SNV- and MSC-treated spectra. Savitzky–
Golay second derivative transformation with third-order poly-
nomial applied smoothing and differentiation to the spectra to
reduce random noise and enhance spectral resolution. This
resulted in peaks which were sharp and not overlapping.

Principal component analysis (PCA) was then carried out
on each of the pretreated spectra. Figures 6, 7, and 8 show the
score plots of the second principal component (PC 2) against
the first principal component (PC 1) for the pretreated spec-
tra. It was observed that for both MSC-corrected and SNV-

corrected spectra, PC 1 and PC 2 accounted for 92 % of the
total variance in the data, with PC 3 accounting for the
remaining 8 %.

The MSC- and SNV-treated score plots showed clear
patterns of clusters along the PC 1 axes. From left to right,
the sequence of the score plot was formulation 11, 10, 1, 6, 7, 9,
2, 4, 8, 5, 3, and 12. This sequence coincided with increasing
order of letrozole content and decreasing order of PLGA in
the formulation as determined by the destructive RP-HPLC
method (Table II). Thus, it could be inferred from these score
plots that PC1, which explained 70 % of the total variance,
primarily correlated with the amount of letrozole within the
nanoparticles while PC 2, which explained 22 % of the total
variance, correlated with the amount of PLGA in the
nanoparticles.

For spectra that were treated with third-order polynomial
Savitzky–Golay second derivative with 7 filter points, a look at
the score plot (Fig. 8) showed no clear pattern even though PC

Fig. 4. Three-dimensional response surface plots showing the main effects of drug loading, polymer
loading, emulsifier concentration, and phase volume ratio on EE

Fig. 5. Raw NIR absorbance spectra, MSC-treated, SNV-treated, and Savitzky–Golay
second derivative-treated spectra of the 12 formulations of PB design. MSC and SNV
pretreatment resulted in the removal of a large part of the variance among spectra without
distorting the spectral features. Second derivative transformation on the other hand, intro-
duced peaks and troughs leading to enhanced spectral resolution
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1 and PC 2 accounted for 99 % of the data variance. More-
over, the scores along both PC 1 and PC 2 axes were very
small compared with the scores from the SNV- and MSC-
treated spectra. It is reported that derivatization generally
results in splitting of overlapping peaks and results in decrease
in sensitivity due to the introduction of new spectral peaks
(21). However, examination of the loading plots for the
Savitzky–Golay second derivative-transformed spectra
(Fig. 9) showed that for PC1, there were no prominent peaks
between 1,100 and 1,600 nm while PC2 and PC 3 showed both
positive and negative peaks between 1,100 and 1,600 nm. By
comparing these three loadings with the second derivative
spectra of pure letrozole and PLGA, the following assign-
ments could be made: PC1 loading vector showed peaks at

1,624, 1,640, 1,868, 2,138, 2,170, 2,280, and 2,456 nm which
could be attributed to the letrozole component of the nano-
particulate system while PC 2 showed peaks at 1,172, 1,332,
1,654, 1,694, 2,138, 2,228, 2,272, and 2,450 nm which could be
attributed to the PLGA component of the system. This
showed that PC1 correlated with the amount of letrozole in
the nanoparticles while PC 2 correlated with the PLGA
content.

To quantitatively predict the drug content in the nano-
particulate system, the influence of two standard regression
methods, PCR and PLS regression, on the pretreated samples
were also examined. These two regression methods were se-
lected because they are the most commonly used regression
methods and have been found to be very accurate in terms of

Fig. 6. Principal component analysis score plot of PC1 against PC2 for MSC-treated NIR
spectra showed a clear pattern of clusters along PC 1 axis. From left to right, the order of the
sequence coincided with an increasing order of drug loading in the nanoparticle as deter-
mined by RP-HPLC. This shows that PC 1 correlates with the amount of drug while PC 2
explains the variance in the PLGA content

Fig. 7. Principal component analysis score plot of PC1 against PC2 for SNV-treated NIR
spectra showed a clear pattern of clusters along PC 1 axis. From left to right, the order off the
sequence coincided with an increasing order of drug loading in the nanoparticle as deter-
mined by RP-HPLC. This shows that PC 1 correlates with the amount of drug while PC 2
explains the variance in the PLGA content
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model prediction (23). Tables III and IV show the results of
the PCR and PLS regressions for the different pretreatment
methods. In both PCR and PLS regression, spectra that were
pretreated using Savitzky–Golay second derivative gave the

best predictive ability based on the correlation coefficients,
RMSEC, RMSEP, SEC, and SEP values for both calibration
and prediction models. Thus, spectral pretreatment with
Savitzky–Golay second derivative transformation was the best

Fig. 8. Principal component analysis score plot for PC1 and PC2 for Savitzky–Golay second
derivative-transformed NIR spectra. Second derivative transformation resulted in the split-
ting of overlapping peaks and the introduction of peaks and troughs. As a result, there were
no clear pattern of clusters along the PC 1 axis

Fig. 9. Principal component loading vectors of the three principal components and second
derivative spectra of the pure components. The spectrum of PC 1, which accounted for 91 %
of the total variance was similar to the spectrum of pure letrozole while PC 2, which
accounted for 8 % of the total variance was similar to the spectrum of PLGA. PC 3, which
accounted for 1 % of the total variance had a spectrum which was not similar to spectra of
both letrozole and PLGA and may be due to variation in other physical properties such as
particle size, intensity differences, or differences in packing densities
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method in effectively minimizing the variations in the raw
spectra of letrozole-loaded nanoparticles. PLS models for
the Savitzky–Golay second derivative-transformed spectra
showed better prediction ability than the corresponding PCR
model as depicted by higher correlation coefficients (0.991 for
both calibration and prediction models for PLS compared
with 0.988 and 0.990 for calibration and prediction for PCR),
lower root mean square errors of calibration and prediction
(RMSEC and RMSEP) and lower standard errors of calibra-
tion and prediction (SEC and SEP; Tables III and IV). More-
over, there was a smaller difference between RMSEC and
RMSEP for the PLS models pretreated with Savitzky–Golay
second derivative transformation (RMSEC=0.747 %;
RMSEP=0.786 %) compared with the RMSEC and RMSEP
for the PCR models pretreated with the same method
(RMSEC=0.849 %; RMSEP=0.740 %). It is reported that
multivariate models that result in big differences between
RMSEC and RMSEP usually yield prediction models that
are not very robust and may fail when tested with an indepen-
dent validation set (18). Figure 10 shows the relationship
between the actual and predicted drug loadings for the PLS
calibration and validation models that were pretreated by the
Savitzky–Golay second derivative transformation. Very low
RMSEC and RMSEP (0.747 and 0.786 %), SEC and SEP
(0.758 and 0.589 %) and high calibration and prediction cor-
relation coefficients between measured and predicted drug
loadings indicate that NIR spectroscopy has good predictive
potential for drug loading in nanoparticles.

The difference between PLS regression and PCR is that in
PCR, the three principal components were derived from princi-
pal component analysis and were used to perform regression on
the drug loading whereas in PLS regression, the PLS compo-
nents or latents variables were derived by comparing both spec-
tral and target property information to find the direction of
greatest variability (5). In other words, whereas in PCR, we
knew from PCA that the first principal component (PC 1) which
represented the largest variation in the spectra correlated with
the amount of letrozole in the nanoparticulate system, in PLS
regression, the first PLS component represented the most rele-
vant variations showing the best correlation with the drug load-
ing in the system. The first two PLS factors, PLS 1 and PLS 2, for
the Savitzky–Golay second derivative-transformed spectra
explained 76 and 19 %, respectively, of the total variance in
the spectra while PLS 3 accounted for 5 % of the variance.

Spectral and chemical information contained in the PLS
model were estimated by correlating the PLS loading vectors
with the second derivative spectra of the individual compo-
nents of the nanoparticulate system (Fig. 11). PLS 1 loading
vector showed effective smoothing with no peaks between
1,100–1,600 nm but showed positive and negative peaks at
1,624, 1,640, 1,868, 2,138, 2,170, 2,280, and 2,456 nm which
could be attributed to the letrozole component of the system
while PLS 2 showed peaks at 1,172, 1,332, 1,654, 1,694, 2,138,
2,228, 2,272, and 2,450 nm corresponding to the PLGA com-
ponent of the system. PLS 3 may be due to physical variations
such as differences in particle size distribution.

Table III. Principal Component Regression of MSC, SNV, and Savitzky–Golay Second Derivative-Transformed NIR Spectra for Calibration
and Prediction of Letrozole and PLGA

MSC SNV Savitzky–Golay

Calibration Prediction Calibration Prediction Calibration Prediction

Samples 36 36 36 36 36 36
Slope 0.957412 0.82900 0.957483 0.828827 0.977374 0.964158
Offset 0.448953 1.93057 0.448200 1.932293 0.238517 0.777366
Correlation 0.978474 0.96485 0.978511 0.964810 0.988622 0.990186
RMSE 1.165071 1.24002 1.164094 1.240839 0.849203 0.740259
SEC/SEP 1.181598 1.21242 1.180607 1.213250 0.861249 0.602415
Bias 1.325e-07 0.329 9.272e-08 0.329539 −1.457e-07 0.441769

Second derivative transformation showed lower RMSE, SEC, SEP, and a higher correlation coefficient than MSC and SNV-treated spectra

Table IV. PLS Regression of MSC, SNV, and Savitzky–Golay Second Derivative-Transformed NIR Spectra for Calibration and Prediction of
Letrozole and PLGA

MSC SNV Savitzky–Golay

Calibration Prediction Calibration Prediction Calibration Prediction

Samples 36 36 36 36 36 36
Slope 0.963228 0.85399 0.963367 0.853988 0.982424 0.946380
Offset 0.387639 1.793364 0.386178 1.793643 0.184968 1.031883
Correlation 0.981442 0.949768 0.981512 0.949710 0.991188 0.991141
RMSE 1.082594 1.404363 1.080552 1.405067 0.747825 0.786413
SEC/SEP 1.097950 1.357095 1.095880 1.357768 0.758433 0.589398
Bias 2.649e-08 0.426249 5.298e-08 0.426484 1.060e-07 0.529817

Second derivative transformation showed lower RMSE, SEC, SEP, and a higher correlation coefficient than MSC and SNV-treated spectra
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Fig. 10. Calibration and validation plots of measured versus predicted drug loading for spectra pretreated by
Savitzky–Golay second derivative transformation. Very low RMSEC and RMSEP; SEC and SEP and high
calibration and prediction correlation coefficients between measured and predicted drug loadings indicate
that NIR spectroscopy has good predictive potential for drug loading of nanoparticles

Fig. 11. Loading vectors of the PLS factors and second derivative spectra of letrozole and
PLGA. The spectrum of PLS 1, which accounted for 76 % of the total variance was similar
to the spectrum of pure letrozole while PLS 2, which accounted for 19 % of the total
variance was similar to the spectrum of PLGA. PC 3, which accounted for 5 % of the total
variance had a spectrum which was not similar to spectra of both letrozole and PLGA and
may be due to variation in other physical properties such as particle size, intensity differ-
ences, or differences in packing densities
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Near-Infrared Chemical Imaging

Whereas NIR spectroscopy alone is limited in its ability
to evaluate drug product homogeneity, chemical imaging com-
bines the chemical selectivity of NIR spectroscopy with the
power of image visualization to characterize quantitatively the
spatial distribution of the components comprising pharmaceu-
tical samples (24). NIR-CI therefore provides the opportunity
to investigate localized micro-domains of ingredients within a
given sample. In this regard, NIR-CI was employed to char-

acterize quantitatively the spatial distribution of letrozole and
PLGA within the 12 formulations. The raw hyperspectral
datacubes obtained were preprocessed prior to multivariate
regression to reduce or eliminate non-chemical biases such as
scattering effects due to surface heterogeneity, interference
from external light sources, and random noise, from the spec-
tral information (6,24). Preprocessing methods used were
MSC, SNV, and third-order polynomial Savitzky–Golay sec-
ond derivative transformation. As with NIR spectroscopy, the
preprocessing method that gave the best way of visualizing
groups in the data unambiguously was Savitzky–Golay second
derivative transformation with third-order polynomial using

Fig. 12. PLS images and associated histograms of the 12 formulations. The same scale (on right) is used for all
images, with the highest intensity of 0.3 representing letrozole and the lowest intensity of −0.05 representing PLGA.
The images show formulation 12 with the highest drug loading while formulation 11 had the lowest drug loading. The
color codes based on the scale for the formulations are in agreement with the order of drug loading determined by
RP-HPLC

Table V. PLS Histogram Distribution from PLS Score Images of the
12 Formulations

Formulation Mean score (±SD) Skew Number of pixels

1 0.0296±0.030 0.06322 2,490
2 0.0765±0.0377 −0.0580 2,488
3 0.1451±0.03263 −0.0020 2,492
4 0.1069±0.03283 −0.5810 2,492
5 0.1149±0.0200 −0.0991 2,492
6 0.0833±0.0200 0.0062 2,490
7 0.05113±0.0238 −0.00201 2,490
8 0.07903±0.03199 −0.0664 2,488
9 0.07676±0.03192 −0.02008 2,495
10 0.03186±0.02487 0.1577 2,482
11 0.0076±0.03166 −0.111 2,489
12 0.2151±0.0386 −0.0101 2,490

Formulation 12 had the highest mean score while formulation 11 had
the lowest mean score. The order of the mean score from PLS is in
agreement with the order of drug loading determined by RP-HPLC

Fig. 13. Plot of actual drug loading versus PLS mean scores of the
image intensities. A high coefficient of determination shows linearity
between the actual drug loading determined by RP-HPLC and the
images by NIR-CI
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seven filter points. A PLS regression was then performed on
the data set. To visualize the spatial distribution of the com-
ponents within the formulations, a library was built from the
pure component spectra with class 1 representing letrozole
and class 2 representing PLGA. PLS images of the 12 formu-
lations were then concatenated according to the first class in
the library and color mapping with intensity scaling was used
to display the compositional contrast between pixels in the
images (Fig. 12).The spectral absorbance for each pixel was
then decomposed into score values with the highest score and
highest intensity representing the highest drug loading. The
corresponding histograms showed symmetrical distribution of
the components in the nanoparticulate system. Table V shows
the mean scores and skewness of the histograms generated by
the PLS images. The formulations can be arranged based on a
visual examination of the 12 PLS images and also according to
their mean scores, in order of decreasing drug contents as
formulation 12>3>5>4>6≥8≥9≥2>7>10>1>11. To assess
the validity of the model to effectively assess the drug loading
in the nanoparticulate system, a quantile–quantile plot was
constructed for the actual drug loading and the mean score
of the PLS images (Fig. 13). A good correlation with a coef-
ficient of 0.9695 was obtained, showing that NIR-CI can be
used to nondestructively predict the drug loading within
PLGA nanoparticles.

CONCLUSION

A Plackett–Burman design of experiment was applied to
evaluate the main effects of formulation variables on the
entrapment efficiency of letrozole-loaded nanoparticles pre-
pared by the emulsification–solvent evaporation method. Sta-
tistical analyses and Pareto ranking analysis showed that the
factors that had significant main effects on the drug loading of
the prepared nanoparticles were the amount of drug, the
phase volume ratio and type of organic solvent. A destructive
RP-HPLC method was applied to determine the drug loading
in the nanoparticles and this was compared with non-destruc-
tive methods namely NIR spectroscopy and NIR chemical
imaging. The results obtained from the non-destructive meth-
ods were in agreement with the RP-HPLC reference analysis
method. Our study shows that as rapid, nondestructive, and
non-invasive techniques, NIR and NIR-CI could provide the
possibility for real-time process control and quality assurance,
leading to significant improvement over conventional analytical
methods.
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